toppic
当前位置: 首页> 玄幻小说> 海洋国家实验室在扇贝基因组精细图谱绘制和动物宏观进化领域取得重要进展 | Nature Ecology & Evolution

海洋国家实验室在扇贝基因组精细图谱绘制和动物宏观进化领域取得重要进展 | Nature Ecology & Evolution

2018-03-02 20:26:47

本文转载自微信公众号海洋国家实验室




2017年4月3日,青岛海洋科学与技术国家实验室(以下简称“海洋国家实验室”)、中国海洋大学包振民教授领衔的国际研究团队首次完成了扇贝基因组精细图谱绘制,并在动物宏观进化研究领域取得重要进展。在探究原始动物祖先(Urbilateria)染色体核型进化、躯体结构多样性产生、眼睛起源及其调控机制等方面取得多项新发现和新认识,为理解动物早期演化机制提供关键线索。


来源 青岛海洋科学与技术国家实验室

      

该研究成果发表在国际生态与进化领域期刊 Nature Ecology & Evolution上(论文信息见文末)。海洋国家实验室海洋渔业科学与食物产出过程功能实验室、中国海洋大学包振民教授和海洋国家实验室海洋生物学与生物技术功能实验室、中国海洋大学王师教授分别为该文的通讯作者和第一作者。该成果是在海洋国家实验室鳌山科技创新计划项目支持下取得的优秀代表成果,同时得到了海洋国家实验室鳌山人才“优秀青年学者”项目等资助。

      

现今地球上,动物界99%的物种隶属双侧对称动物(bilaterian),寒武世生命大爆发,双侧对称动物大量出现,进而演化形成了我们今天地球上动物界主要类群的基本格局。进化学家推测这些双侧对称动物可能起源于一个古老的共同祖先(Urbilateria),但由于早期动物化石记录匮乏,长期以来人们对双侧对称动物的起源和进化机制存有较多争议。


通过对现存古老动物类群基因组比较分析,以重构并推断双侧对称动物祖先的基因组特征,被认为是解决这些争议的关键途径。目前对动物基因组进化的认知主要来源于两大动物类群(后口动物和蜕皮动物),而对于最为古老的第三大类群冠轮动物,仍所知甚少。解析原始冠轮动物类群(如起源于距今5亿年前早寒武世的贝类)的基因组特征,可为理解动物早期起源和进化机制提供关键线索。

研究发现


包振民教授团队作为国际扇贝基因组计划的发起者,领导完成了首张高质量扇贝全基因组图谱绘制。通过对扇贝基因组深度解析,揭示扇贝呈现众多原始动物祖先基因组特征,近乎完美地保存了动物祖先的染色体核型、保留数目最多的古老基因家族、具有最完整的 Hox、ParaHox、NK 基因簇的基因组序列等,为迄今已发现的最古老的双侧对称动物基因组,为研究双侧对称动物早期起源进化提供了难得的基因组模型。




扇贝(P. yessoensis) 近乎完美地保留了双侧对称动物祖先的染色体核型


进一步研究发现扇贝控制躯体模式(body plan)发育的Hox基因簇呈“分段共线性”表达模式,与目前普遍认为 Hox 基因簇遵循“完全时空共线性”表达模式不同。深入研究揭示“分段共线性”表达模式在低等动物普遍存在,是一种独特、古老的躯体模式决定机制,为理解寒武世动物躯体模式多样化的起源和进化机制提供了新视野。



Hox基因簇“分段共线性(STC)”调控新模式及其可能的起源和演化途径


扇贝具有数十至上百的镜眼,研究还发现扇贝眼睛拥有不同寻常的多套光传导通路系统,其眼睛发生由 pax2/5/8 基因而非 pax6 基因主导,对目前国际主流的眼睛单源起源假说(pax6控制)提出了挑战,为动物体侧眼独立于头眼起源进化的新假说提供关键证据。上述重要发现将贝类在动物进化研究领域提升到一个新地位,拓展和加深了当前学术界对双侧对称动物的早期起源和演化机制的认识。


扇贝眼睛拥有多套光传导通路系统


题目 Scallop genome provides insights into evolution of bilaterian karyotype and development

作者 Shi Wang, Jinbo Zhang, Wenqian Jiao, et al

期刊 Nature Ecology & Evolution 1, Article number: 0120 (2017)

doi:10.1038/s41559-017-0120

在线发表日期 03 April 2017

摘要 Reconstructing the genomes of bilaterian ancestors is central to our understanding of animal evolution, where knowledge from ancient and/or slow-evolving bilaterian lineages is critical. Here we report a high-quality, chromosome-anchored reference genome for the scallop Patinopecten yessoensis, a bivalve mollusc that has a slow-evolving genome with many ancestral features. Chromosome-based macrosynteny analysis reveals a striking correspondence between the 19 scallop chromosomes and the 17 presumed ancestral bilaterian linkage groups at a level of conservation previously unseen, suggesting that the scallop may have a karyotype close to that of the bilaterian ancestor. Scallop Hox gene expression follows a new mode of subcluster temporal co-linearity that is possibly ancestral and may provide great potential in supporting diverse bilaterian body plans. Transcriptome analysis of scallop mantle eyes finds unexpected diversity in phototransduction cascades and a potentially ancient Pax2/5/8-dependent pathway for noncephalic eyes. The outstanding preservation of ancestral karyotype and developmental control makes the scallop genome a valuable resource for understanding early bilaterian evolution and biology.


The nature of Urbilateria, the last common ancestor of all bilaterians, is enigmatic due to the lack of a plausible candidate in the fossil records 1 . The earliest unambiguous fossil of a bilaterian, Kimberella, shows remarkable resemblance to a mollusc, albeit its relationship with Urbilateria remains uncertain 2,3 . In the absence of definitive fossil records, genomic reconstruction by comparing extant bilaterian genomes becomes essential to our understanding of early bilaterian ancestors and their subsequent evolution 4,5 . However, reconstructing the genome of the bilaterian ancestor is challenging due to the paucity of high-order genome assemblies from ancient and/or slow-evolving lineages. Early genome sequencing efforts have mostly focused on two of the three major bilaterian groups, that is, protostome ecdysozoans and deuterostomes. Limited sequencing in the third group of protostome lophotrochozoans, a large superclade that includes molluscs, annelids and brachiopods, has revealed that their genomes are less derived from the ancestral bilaterian state than those of many ecdysozoans 5 . Unfortunately, none of these less-derived lophotrochozoan genomes were assembled to a degree that permits chromosome-level genome comparison.


Mollusca is the most speciose phylum of Lophotrochozoa and among the first bilaterians to appear in fossil records 6 . Many molluscan lineages including bivalves showed little change in shell morphology and life style over several hundred million years, and yet extant molluscs are abundant and thriving in diverse marine, freshwater and terrestrial environments, providing key ecological services and significant economic benefits to humans. Molluscs are highly diverse in form, making them excellent subjects to study body plan evolution and in particular its patterning by Hox genes 7 . Molluscs also have the greatest diversity in eye morphology, ranging from simple cupped to chambered or compound eyes, as well as in the number and placement of their eyes 8 , providing good subjects to study the origin and evolution of the eye, or Darwin’s ‘organ of extreme perfection’. Despite the great evolutionary and biological significance of molluscs, our sampling of their genomes remains limited to a few species 5,9,10,11 and without high-order assemblies.


Here we report a high-quality, chromosome-anchored reference genome of the scallop Patinopecten yessoensis (Jay, 1857), a bivalve mollusc from the large Pectinidae family that contains ~270 living species and thousands of fossil species (dating back to ~320–340 million years ago, Ma 12 ). Scallops are widely distributed in world oceans. They are mostly free-living and have multiple eyes scattering along the mantle edge. Many scallops are important fishery and aquaculture species. P. yessoensis is a large scallop living on cold and stable ocean bottoms of the northwestern Pacific. It has a conserved 19-chromosome karyotype that is common to diverse bivalves and may represent the ancient karyotype of bivalves 13 . Analysis of the scallop genome and extensive transcriptomes reveals outstanding preservation of ancestral bilaterian linkage groups, an intact Hox gene cluster under new expression control and diverse phototransduction cascades with a potentially ancient Pax2/5/8-dependent pathway for noncephalic eye formation, providing insights into the evolution of genome organization and developmental control during the emergence of bilaterians.

链接 https://www.nature.com/articles/s41559-017-0120


友情链接